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Abstract— Traditionally the leader or follower role of the
robot in a human-robot collaborative task has to be pre-
determined. However, humans performing collaborative tasks
can switch between or share the leader-follower roles effortlessly
even in the absence of audio-visual cues. This is because
humans are capable of developing a mutual understanding
while performing the collaborative task. This paper proposes a
framework to endow robots with a similar capability. Behavior
of the robot is controlled by two types of controllers such
as reactive and proactive controllers. The reactive controller
causes the robot to behave as a follower and the proactive
controller causes it to behave as the leader. The proactive
controller suggests proactive actions based on human motion
prediction. The framework relies on a novel technique to
compute a measure of confidence for the prediction. This confi-
dence measure determines the leader/follower role of the robot.
Hence, the robot can switch roles during the task autonomously
and dynamically. A table-lifting task which is essentially a
cooperative manipulation task is considered to demonstrate the
proposed framework. Finally, the performance of the human-
robot team carrying out this task is experimentally evaluated.
Results show that the proposed system improves the overall
task performance.

I. INTRODUCTION

For service robots to be useful, one of the fundamental
abilities they should possess, is to work collaboratively with
humans. A common example where collaboration would be
required, is in a cooperative manipulation task, where the
human-robot team has to manipulate an object of interest.
Technology that enables robots to work collaboratively with
humans can be widely applied in the industry as well as in
common day-to-day scenarios. This field has seen a renewed
interest in recent years because of the possibility of humanoid
robots residing along with us in the near future.

Traditionally, the intellectual responsibility of planning
and guiding the co-operative task is placed entirely on the
human while the collaborating robot is assigned a mere fol-
lower role. These robot followers are pre-programmed with
simple reactive behaviors. For example, a popular approach
for accomplishing a cooperative object manipulation task,is
using impedance control [1], [2]. However adopting such a
naive strategy requires the human to spend extra energy in
dragging the robot, apart from the energy spent in moving
the load itself. Furthermore, a goal such as keeping the table
exactly horizontal throughout the table-lifting task is very
difficult to achieve using this technique alone.
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Maeda et al. were amongst the earliest to provide a
solution to this problem, by using a human motion pre-
diction technique which enables the robot partner to work
proactively with the human [3]. Human motion prediction
was obtained by following the assumption, that the fellow
human’s motion satisfies the minimum jerk model [4] in
the cooperative manipulation setting. Based on estimation
of the minimum jerk model parameters, the robot could
predict the velocity profile of the human’s motion, which
could then be used to take a proactive action. This strategy
was shown to reduce the human’s effort for the cooperative
manipulation task. Recently, we have seen a resurgence
in the studies of physical human robot interaction which
make use of motion prediction strategies. Cortevilleet al.
presented a robot assistant which could predict the humans
motion using an extended Kalman filter (EKF) [5]. The EKF
was designed according to the minimum jerk model. The
amount of assistance provided by the robot throughout the
entire task had to be decided beforehand. In [6] the authors
proposed a solution to change the role of the robot during the
task execution using a homotopy switching model, although
manually. Automatic adjustment of the homotopy variable
αi which decides the role of the robot was left as an open
question, for which the proposed work offers a solution.
Another shortcoming in [5] and [6] is the assumption that
the robot should know the destination of the object being
transported so that a plan of motion could be generated.
If the destination is changed mid-way, a new subtask has
to be generated on the fly which is non-trivial and is a
separate work in itself [7]. Apart from cooperative tasks,
human motion prediction has also been applied extensively
in robotic teleoperation tasks [8], [9], [10].

Recent works show that the minimum jerk model may
not be suitable for cooperative manipulation tasks [11].
The minimum jerk model assumption fails when there are
large perturbations in the motion trajectory, or if the human
decides to change the course of the trajectory during the task
execution. In such cases, the robot might fail to comply with
the human, which may lead to disastrous consequences. Also,
in order to apply the minimum jerk model successfully, the
final position of the object must be known both to the human
and robot which is cumbersome in real world situations. It is
interesting to note that two humans can excel in a table-lifting
task even if one does not know the final position of the object.
Other related work include [12] which proposes a task-model
learning approach combined with an adaptive control system.
After going through a two-step learning process, the robot
can work collaboratively with the human while inferring his
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Fig. 1. Proposed approach block diagram

intent.
In this work, we propose a novel solution to address the

problem of switching the robot’s role automatically duringa
cooperative manipulation task. Additionally, the robot does
not need to know the final position of the object. This is
practically desirable, since the motion trajectory of the object
may require to be changed during task execution, depending
upon the environment, obstacles or the physical limitations
of the human and/or the robot.

The proposed work uses a prediction-evaluation method
to estimate the confidence of prediction and using it to
adjust the role of the robot. Our hypothesis stems from
the observation that, in a human-human team performing a
collaborative task, each human constantly predicts the other’s
motion. Based on how well the other person conforms to his
predictions, the human can decide whether to lead him or
follow him. We apply the same strategy to the humanoid
robot. Another way of looking at this solution is, suppose if
the robot is able to predict the human’s motion accurately, it
means that the robot has acquired an accurate model of the
human’s behavior. Hence, it can start behaving as a leader
and proactively take the next action based on its prediction.
However if the robot has not been able to predict the humans
motion correctly, it is better for the robot to reactively
comply with the human. This intuition sets the basis for
adjusting the leader/follower role of the robot continuously
and dynamically.
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Fig. 2. Experimental Setup

The rest of the paper is organized as follows. In section
II we present the experimental platform. Section III presents
the methodology of the proposed system. The results are
presented in section IV. Section V concludes the paper with
a few discussions and future works.

II. EXPERIMENTAL PLATFORM

For the experiments we developed a platform which con-
sists mainly of a Vicon motion capture system and a Nao
humanoid robot. The table-lifting task consists of the human
and humanoid robot lifting up a dummy table to a random
height and keeping it down. Fig. 2 shows the experimental
setup. Only the positional information of the table is used
for characterizing the task. We do not use force sensors
because the table does not have a significant weight. The
Vicon motion capture system provides precise position and
motion information about the table. Motion of the robot
hand is constrained to 1-D up-down motion. However, the
proposed system can be easily extended to handle multiple
dimensions. C++ is used at the front-end for communicating
with the robot and MATLABc©is used at the back-end for
processing data.

A. Motion Capture System

The Vicon MX motion capture system is used for ob-
taining the positional information of the table, needed for
carrying out the task as well as for evaluating the perfor-
mance. Frame rate of the motion capture system is 100
Hz. The robot can acquire motion capture data only after
it completes the commanded action. Hence, the frame-rate
is limited by the speed of the robot to complete a commanded
action which is typically 100 ms. The motion capture system
is guaranteed to be precise within 0.7 mm. Figure 2 also
shows the table with the markers. The absolute position of
the table along the vertical axis is calculated by averaging
the positions of the markers placed at the end points. LetZ1

andZ2 be the instantaneous 1-D coordinates of the human-
end and the robot-end of the table respectively. Observation
and prediction is done onZ1.

B. Humanoid Robot

We use the medium sized Nao humanoid robot manufac-
tured by Aldebaran robotics. An inverse kinematic procedure
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provided by the SDK is used to control the end effector
(hand-tip) position of the robot. Since the robot control is
based only on controlling the end-effector position, certain
offset had to be added in order to compensate for the small,
but definite weight of the table.

III. METHODOLOGY

Figure 1 shows the conceptual block diagram for the
proposed system. The framework consists of the reactive
controller, proactive controller and the behavior gain con-
trol blocks. As the name suggests, the reactive controller
generates a reactive robot behavior based upon the current
state of the environment. The proactive controller consists
of an EKF based human motion predictor and an evaluation-
based confidence generator. Based upon the observed human
actions, the predictor estimates the position of the human in
the next time-step, which decides the robot’s proactive action.
Additionally, it generates the confidence of prediction, which
is the key in adjusting the role of the robot. Based upon the
confidence value, the behavior gain control blocks mixes the
reactive and proactive actions to generate a composite action
which is taken by the robot. According to our hypothesis,
the weight allotted by the gain control block to the proactive
behavior varies directly as the confidence value. In the
remainder of this section, we discuss the details of the
proposed framework.

A. Reactive Controller

The reactive controller generates a reactive response by
the robot to the observed state of the object. In the table-
lifting task, this controller observes the position of the table
and suggests a suitable action to perform so that a certain
objective is achieved. For our experiments, the objective is
to keep the table horizontal throughout the task. This can be
accomplished using any generic feedback controller. How-
ever, we chose to use a controller learned from reinforcement
learning for the following reasons :

• It is possible to learn a good controller in a short time.
• It compensates for the time needed to manually tune

the parameters of a feedback controller.
• Objective of the task is very simple in the current

experiment. However, in the future, we will consider
complex tasks such askeeping a bowl in the center

of the table while performing the table lifting task.
Complex tasks like these, have a long term reward
to maintain for which reinforcement learning is most
suited. Also, such high level objectives are much easier
to specify using reinforcement learning.

In this work we use the discrete Q-learning algorithm. The
Q-table update equation is given by

∆Q(st, at) = α[r + γmax
a

Q(st+1, a)−Q(st, at)] (1)

where r is the reward,α is the learning rate andγ is
the discount factor. For the task at hand,γ does not play
a significant role, since there is no sense of a long term
reward. The state of the environment is determined by the
incline of the table at the given moment. This information is
obtained from the motion capture system. Incline of the table
is quantized into discrete number of states. Figure 3 shows a
state space consisting ofN states. The action space consists
of a predetermined discrete set of commands which move the
robot’s hand-tip up or down by specified distances. The robot
has to undergo an online learning phase to learn the Q-table.
During this phase, it is assumed that the human remains
comfortably stationary. To speed up the learning phase we
use a simple guided reinforcement learning algorithm based
on counting the number of state-action visits. Essentially,
the action selection for exploration is done on the basis of
number of visits to the particular state-action pair, instead
of random action selection as inǫ - greedy algorithms. The
reinforcement learning algorithm is given below.

Algorithm 1 Guided Reinforcement Learning

1: Initialize V isit(si, ai) = 0 ∀i ∈ N

2: Initialize Q-tableQ(si, ai) = 0 ∀i ∈ N

3: while Learning phasedo
4: t = timestep

5: st = getState()
6: Selectat ← argmin(a)[V isit(st, a)]
7: Take actionat
8: V isit(st, at)← V isit(st, at) + 1
9: r = getReward()

10: UpdateQ(st, at) using (1)
11: end while

B. Proactive Controller

The proactive controller is the most important block of
the proposed system. Role of the proactive controller is to
keep a track of actions performed by the human and generate
a prediction of the human’s position in the next time-step,
along-with a confidence measure for the prediction. For the
prediction purpose, an extended Kalman filter is used. State
of the EKFxk is given by

xk =





sk
vk
ak



 (2)



The measurement model is given by

zk = sk + v (3)

where sk is the displacement of the human’s end of the
table (equivalently his hand-tip),vk is his velocity,ak is
his acceleration andv ∼ N(0, R) is the measurement noise,
all at the instantk.

We use the assumption that the acceleration of the human
hand changes slowly throughout the motion since humans
naturally try to minimize jerk. Note that this is not the same
as using the minimum jerk model.

Hence, the state update equation can be written as

xk+1 =





sk + vkt+
1

2
akt

2

vk + akt

ak



+ w (4)

wherew ∼ N(0, Q) is the process noise.
Based on the state estimatêxk, the human’s position at

the next time-step can be predicted as

ŝk+1 = ŝk + v̂kt+
1

2
âkt

2 (5)

The variance of the measurement noise (R) is initialized
to 0.7 which corresponds to the uncertainty in measurement
obtained by the Vicon system. Using this EKF, it is possible
to get nearly accurate predictions of the human’s motion.

For obtaining the confidence of prediction, we derive
inspiration from [13], wherein the authors proposed a tech-
nique, to obtain a confidence measure based on the statistical
properties of the residuals between the predicted measure-
ments and the observed measurements. In our technique, the
EKF provides a state estimate and an associated covariance
matrix. Firstly, we marginalize the covariance matrix to
include only the 1-D variance associated with the position
prediction, sayρ. Let the predicted position bêsk. Then,
we evaluate the likelihood of the observed measurement,zk
using an unnormalized Gaussian distribution given by

Lk = exp

(

−
(zk − ŝk)

2

2ρ2

)

(6)

We choose an unnormalized Gaussian distribution to make
0 < L ≤ 1. It can be seen thatL would give us a
direct measure of confidence about the prediction based on
the evaluation of the previous prediction against the true
measurement. However, considering only the last step mea-
surement error is not sufficient. For the confidence measure,
we introduce a function given by

Ck+1 =
Lk + φLk−1 + · · ·+ φk−1L1

1 + φ+ · · ·+ φk−1
(7)

The subscripts denote the time-steps at which they were
obtained. Hence,Ck+1 is the confidence of prediction for
the next time-step, that considers all the likelihoods observed
previously, weighted by the forgetting factorφ, where0 <

φ ≤ 1. This function can be implemented recursively. Also,
it can be seen that the denominator is for normalization.
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Fig. 4. Predictions obtained from EKF

C. Behavior Gain Control

At a given time stepk, let the reactive controller suggest a
next-step actionRk+1 and the proactive controller suggest an
actionPk+1. Let the confidence of this prediction beCk+1.
The gain control block combines these together to form a
composite actionAk+1 given by

Ak+1 = Ck+1Pk+1 + (1− Ck+1)Rk+1 (8)

This action is taken by the robot at time-stepk + 1. The
inspiration for this form has been taken from [6]. Note that
because0 < C ≤ 1, the robot does not act as a pure leader
or pure follower, but has characteristics of both in different
amounts.

If the confidence of predictionCk+1 is high, larger weight
is allotted to the proactive action. Hence, the robot’s action
has leader-like characteristics. If the robot is not very con-
fident about the prediction, larger weight is allotted to the
reactive behavior and the robot’s action seems follower-like.
Since the system works in real time, the change of behavior
is dynamic and automatic.
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IV. EXPERIMENTAL RESULTS

In this section we present the experiments performed and
the results obtained.

A. Learning the Reactive Controller based on Q - Learning

For Q-learning, a state-action space consisting of 5 states
and 5 actions was arbitrarily chosen. The rewardr was
decided as

r = (|Z2 − Z1|)k − (|Z2 − Z1)|)k+1 (9)

whereZ1 andZ2 represent the position of the human-end
and the robot-end of the table respectively.

Hence, if the slant of the table is decreased, the robot
receives a positive reward. The action set consists of actions
{+2,+1,0,-1,-2}, which correspond to the direction and mag-
nitude of the robot’s motion by a defined position step. The
position step was set to be 2 cm, since it is the smallest
precise movement that can be performed by the robot’s arm.
Values of the reinforcement learning parameter used were,
learning rateα = 0.9 and discount factorγ = 0.2.

10 trials were performed to test how quickly the algo-
rithm could converge to an optimal policy. Median value
for number of iterations to converge was 36. The longest
episode took 62 iterations before it could converge. Hence,
the learning could converge approximately within 40 trials.
Each learning trial took about 5 minutes to complete.

B. Prediction

The previously described EKF is used for predicting
the human motion one time-step ahead. Each time step is
typically about 100 ms, which is the minimum time required
for the robot’s arm to move from one position to another.
Figure 4 shows the predicted and observed values of position,
velocity and acceleration.

The predicted position is calculated from (5). True velocity
and acceleration are derived from the observed position, and
are shown in the figure for comparison with the predicted
values.

It can also be observed from fig. 4 that the predictions
are inaccurate during the initial steps of the motion. After
about 10 time steps the estimates improve. It can be seen
that the difference between the predicted velocity and the
calculated velocity is very small. The calculated acceleration
nearly remains centered at 0 with small changes. This partly
justifies our assumption that the acceleration remains nearly
constant.

C. Confidence Measure

Figure 5 shows how the confidence (C) of the prediction
varies throughout the task, along with the position predictions
and observations.

It can be seen that initially, when the task has not begun
and the table is still, the predictor accurately estimates the
motion to be zero which causes the high confidence value
at the beginning. Once the trial starts, in the initial steps,
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TABLE I

AVERAGE RMSE

Subject Avg. RMSE w/o Prediction Avg. RMSE with Prediction
(mm) (mm)

1 19.139 12.967
2 23.567 16.591
3 24.872 18.418
4 20.085 15.391
5 22.432 17.684

the predictions are inaccurate because of the drastic change
in the motion model. This causes confidence value to drop
down suddenly. The reactive controller of the robot becomes
dominant in this region. As the predictor gains knowledge
about the motion, the predictions go on improving. As the
predictions improve, the confidence values also improves. As
a result the proactive behavior becomes more dominant.

Figure 7 shows the role of the forgetting factorφ in deter-
mining the confidence. Since it is not possible to reproduce
the exact same trajectory during the task, the confidence
trajectories shown in fig. 7 are computed offline step-by-step
using data collected from a table lifting task. As seen from
(7), a low value ofφ means that the predictor allots a small
weight to older likelihood estimates. Thus,C mostly depends
upon the recently observedL. Hence, if the likelihood values
L change quickly, it causesC fluctuate heavily. Using a
similar reasoning, a large value ofφ causes the confidence
measure to settle very slowly. Hence the robot cannot adapt
to the motion changes quickly and generates high confidence
values even for incorrect predictions. A good value forφ

which gives a good tradeoff between smooth variation and
adaptability forC was found to be 0.45.

D. Handling Irregular Cases

One of the major improvements our system offers over
most existing systems, is that, no assumption has been made
regarding the trajectory of the entire motion. The human
has the right to change the trajectory at any point of time,
during the trial. Figure 6 shows a case where the motion of
the human is not typical. Instead of lifting up the table and
keeping it down continuously, the human chooses to take a
pause while lifting the table up. Because of this, an abrupt
change of motion can be seen around time-step 15. The
confidence value drops to zero in 3-4 time steps. During this
phase, the robot starts behaving as the follower and simply
tries to make the table horizontal using the reactive controller.
As the human continues to keep still, the predictor learns
this model and predicts zero movement. Hence, although the
confidence is high and the robot is the leader, there is no
proactive action since the predicted change in position is
zero. Again at time-step 35, the human starts moving the
table upwards. Again, the robots switches from leader to
follower based on the confidence value. Once the motion
has been stabilized the robot maintains a confidence value
centered somewhere around 0.5.



E. Overall System Performance

In this experiment we evaluate the improvement offered
by our system for the table lifting task. IfZ1t is the position
of human side of the table andZ2t is the position of robot
side at any instantt, then the objective is to minimize the
absolute error given by

AbsoluteError =
∑

t

|Z1t − Z2t| (10)

We use the motion capture system to record the trajectories
of the human and robot table ends. Figure 8 shows these
trajectories for cases where the the proposed system was
used (case I : with predictions) and the case where only the
reactive controller was used (case II : without predictions)
The figure also shows the absolute error calculated for the
two cases. We use the root mean square error (RMSE) to
characterize the performance.

The following observations can be made from fig. 8
• The RMSE for the case I is less than RMSE for case

II.
• The motion observed for case I is smoother than that

of case II.
• The absolute error is lower in case I.
Quantitative results are provided in table I for multiple

users. 5 human subjects were asked to participate in the table
lifting task with the robot, one at a time. Each person was
asked to lift up the table to a random height and keep it
down for 10 trials. Totally, for both the cases, 100 trials
were acquired. The table shows the average RMSE for the
10 trials observed for each subject, for each case. It can be
seen that, for all the users, RMSE is lower when the proposed
approach is used as opposed to a simple reactive approach.
Hence a definite improvement can be observed.

V. DISCUSSIONS AND CONCLUSIONS

This section concludes the paper with discussions and
future works.

A. Discussions

Figure 9 shows the performance of two humans perform-
ing the table lifting task. For the sake of comparison with
the human-robot team, the RMSE observed was 6.531 mm.

The motion of the robot is jerky when its reactive behavior
is dominant, because of the fixed step sizes. The design of
our system is such that the prediction accuracy influences
the confidence of prediction. Because of this, many inter-
esting possibilities follow. Better predictions result inbetter
confidence values which allows for proactive robot behavior.
Hence, if the human keeps moving smoothly as the robot
expects him to move, the motion of the robot is also smooth.
This in-turn causes smoother motion of the table as a whole
and hence smoother motion of the human, thus resulting
in better predictions. However, if the motion of the human
is jerky, then the robot is unable to estimate the motion
accurately, and hence does not allow for leader behavior. The
predictions are not fully utilized in such cases and reflects
poor performance. Thus, the results are not only influenced
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by the robot’s performance alone, but also by the human
performance. Especially, subject 1 had been working with
the system for a longer time than others. Hence, the results
for subject 1 were better compared to other human subjects.

In fig. 8 we could observe in case I, the trajectory is
much smoother when the human is placing the table down
as compared to moving upwards. This is because, inherently,
the robots motion while lifting the table against gravity is
jerky because of the internal control characteristics. This
induces some jerks in the human motion also since they
are coupled by the table. Because of this, the prediction
suffers, which causes lower confidence levels. But while
moving downwards, the robot is able to move very smoothly
which allows the human to move smoothly and hence the
system is utilized to its full potential resulting in better
performance. It can also be speculated that sophisticated
velocity or torque controlled robots would yield smoother
motions and offer better improvements in performance using
the proposed technique.

Due to the limitation in the control speed of robot, we
could obtain atmost 10 motion capture samples per second.
With a faster robot, more samples could be obtained per
second which would improve the quality of predictions.

Finally, our work can also be easily extended to proactive
teleoperation. The teleoperated robot can choose to take a
proactive action based on the confidence values which could
reduce the effect of time delays observed in teleoperation
and increase transparency.

B. Conclusions

This work contributes to a framework that utilizes human
motion prediction to adjust the leader/follower role of the
collaborating robot in a co-operative manipulation task. The
framework consists mainly of the reactive and proactive
controllers. The proactive controller is based on an EKF
for human motion prediction. A novel technique to derive
a measure of confidence of the prediction has also been



proposed. Experimental results were presented to provide
conclusive evidence that the proposed approach offers a
definite improvement over simple reactive approaches. Addi-
tionally, the system does not make any assumptions about the
motion trajectory of the object which is practically desirable.

For future works, we propose to utilize longer term
predictions. A general case where the human action does
not necessarily translate directly to robot action can be
considered. Complex objectives in the cooperative task could
also be added.
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