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Abstract— Traditionally the leader or follower role of the Maeda et al. were amongst the earliest to provide a
robot in a human-robot collaborative task has to be pre- splution to this problem, by using a human motion pre-
determined. However, humans performing collaborative taks diction technique which enables the robot partner to work

can switch between or share the leader-follower roles efftiessly . - ) -
even in the absence of audio-visual cues. This is becausepm"’mt'vewW'th the human [3]. Human motion prediction

humans are capable of developing a mutual understanding Was obtained by following the assumption, that the fellow
while performing the collaborative task. This paper propogs a human’s motion satisfies the minimum jerk model [4] in
framework to endow robots with a similar capability. Behavior  the cooperative manipulation setting. Based on estimation
of the robot is controlled by two types of controllers such — f the minimum jerk model parameters, the robot could
as reactive and proactive controllers. The reactive contriber . . . : . .
causes the robot to behave as a follower and the proactive predict the velocity profile of the hl_Jman S_ mOt'Or_" which
controller causes it to behave as the leader. The proactive could then be used to take a proactive action. This strategy
controller suggests proactive actions based on human motio was shown to reduce the human’s effort for the cooperative
prediction. The framework relies on a novel technique to manipulation task. Recently, we have seen a resurgence
compute a measure of confidence for the prediction. This confi i, the studies of physical human robot interaction which
dence measure determines the leader/follower role of the bwt. . " . .
Hence, the robot can switch roles during the task autonomotg make use of motion Pred'c“on_ strategies. Cc_)rtetheal'
and dynamically. A table-lifting task which is essentially a ~Presented a robot assistant which could predict the humans
cooperative manipulation task is considered to demonstra&the motion using an extended Kalman filter (EKF) [5]. The EKF
proposed framework. Finally, the performance of the human- was designed according to the minimum jerk model. The
robot team carrying out this task is experimentally evaluaed. — amaynt of assistance provided by the robot throughout the
Results show that the proposed system improves the overall . .
task performance. entire task had t_o be decided beforehand. In [6] the a_luthors
proposed a solution to change the role of the robot during the
. INTRODUCTION task execution using a homotopy switching model, although
manually. Automatic adjustment of the homotopy variable

For service robots to be useful, one of the fundamental, which decides the role of the robot was left as an open
abilities they should possess, is to work collaborativehw question, for which the proposed work offers a solution.
humans. A common example where collaboration would bgnother shortcoming in [5] and [6] is the assumption that
required, is in a cooperative manipulation task, where thge robot should know the destination of the object being
human-robot team has to manipulate an object of interestansported so that a plan of motion could be generated.
Technology that enables robots to work collaborativelyhwit |f the destination is changed mid-way, a new subtask has
humans can be widely applied in the industry as well as itb be generated on the fly which is non-trivial and is a
common day-to-day scenarios. This field has seen a renew&sharate work in itself [7]. Apart from cooperative tasks,
interest in recent years because of the possibility of hwittn human motion prediction has also been applied extensively
robots residing along with us in the near future. in robotic teleoperation tasks [8], [9], [10].

Traditionally, the intellectual responsibility of plamy Recent works show that the minimum jerk model may
and guiding the co-operative task is placed entirely on theot be suitable for cooperative manipulation tasks [11].
human while the collaborating robot is assigned a mere foffhe minimum jerk model assumption fails when there are
lower role. These robot followers are pre-programmed witharge perturbations in the motion trajectory, or if the huma
simple reactive behaviors. For example, a popular approagd@cides to change the course of the trajectory during ttke tas
for accomplishing a cooperative object manipulation task, execution. In such cases, the robot might fail to comply with
using impedance control [1], [2]. However adopting such ge human, which may lead to disastrous consequences. Also,
naive strategy requires the human to spend extra energyimorder to apply the minimum jerk model successfully, the
dragging the robot, apart from the energy spent in movinfinal position of the object must be known both to the human
the load itself. Furthermore, a goal such as keeping the takdnd robot which is cumbersome in real world situations. It is
exactly horizontal throughout the table-lifting task isrwe interesting to note that two humans can excel in a tablimgjft
difficult to achieve using this technique alone. task even if one does not know the final position of the object.

Other related work include [12] which proposes a task-model
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Fig. 1. Proposed approach block diagram
intent. The rest of the paper is organized as follows. In section

In this work, we propose a novel solution to address thd we present the experimental platform. Section Ill présen
problem of switching the robot’s role automatically duriag the methodology of the proposed system. The results are
cooperative manipulation task. Additionally, the roboedo presented in section IV. Section V concludes the paper with
not need to know the final position of the object. This isa few discussions and future works.
practically desirable, since the motion trajectory of thgeot _ Il EXPERIMENTAL PLATEORM
may require to be changed during task execution, depending

upon the environment, obstacles or the physical limitation " °F the experiments we developed a platform which con-
of the human and/or the robot. sists mainly of a Vicon motion capture system and a Nao

The proposed work uses a prediction-evaluation methdiimanoid robot. The table-lifting task consists of the hama
to estimate the confidence of prediction and using it t&nq humanoid rc.)bot. lifting up a dummy table to a random
adjust the role of the robot. Our hypothesis stems frofi€ight and keeping it down. Fig. 2 shows the experimental
the observation that, in a human-human team performingSgtuP- Only the positional information of the table is used
collaborative task, each human constantly predicts theristh [0f characterizing the task. We do not use force sensors
motion. Based on how well the other person conforms to hga_ecause the table does not have.a 5'9”'“‘?5‘” We_'ght' The
predictions, the human can decide whether to lead him gcon motion capture system provides precise position and
follow him. We apply the same strategy to the humanoi&nOtion information about the table. Motion of the robot
robot. Another way of looking at this solution is, suppose if'@nd i gonstralned tobl-D u_rl)-down r;oélon.hHO\(/jvlever, Ithe;
the robot is able to predict the human’s motion accurately, PrOP0sed system can be easily extended to handle multiple
means that the robot has acquired an accurate model of ﬂ@enswns. C++is used at th_e front-end for communicating
human’s behavior. Hence, it can start behaving as a Iead@ilh the robot and MATLARQ)is used at the back-end for

and proactively take the next action based on its predictioR"°¢€SSINg data.
However if the robot has not been able to predict the humamg Motion Capture System

motion correctly, it is better for the robot to reactively The vVicon MX motion capture system is used for ob-
comply with the human. This intuition sets the basis fofyining the positional information of the table, needed for
adjusting th_e leader/follower role of the robot continugus carrying out the task as well as for evaluating the perfor-
and dynamically. mance. Frame rate of the motion capture system is 100
Hz. The robot can acquire motion capture data only after
it completes the commanded action. Hence, the frame-rate
is limited by the speed of the robot to complete a commanded
action which is typically 100 ms. The motion capture system
is guaranteed to be precise within 0.7 mm. Figure 2 also
shows the table with the markers. The absolute position of
the table along the vertical axis is calculated by averaging
the positions of the markers placed at the end points /et
and Z, be the instantaneous 1-D coordinates of the human-
end and the robot-end of the table respectively. Observatio

Markers at Markers at R Fn ;
Human Side Robot Side and prediction is done o#;.

(forZ,) (forZ,) ' B. Humanoid Robot

We use the medium sized Nao humanoid robot manufac-
Fig. 2. Experimental Setup tured by Aldebaran robotics. An inverse kinematic procedur
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e Complex tasks like these, have a long term reward
T to maintain for which reinforcement learning is most
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Fig. 3. State representation for reinforcement learning where r is the reward,« is the learning rate and is

the discount factor. For the task at handdoes not play

a significant role, since there is no sense of a long term
provided by the SDK is used to control the end effectoreward. The state of the environment is determined by the
(hand-tip) position of the robot. Since the robot control igncline of the table at the given moment. This information is
based only on controlling the end-effector position, darta obtained from the motion capture system. Incline of thegabl
offset had to be added in order to compensate for the smak, quantized into discrete number of states. Figure 3 shows a

but definite weight of the table. state space consisting &f states. The action space consists
of a predetermined discrete set of commands which move the
1. METHODOLOGY robot’s hand-tip up or down by specified distances. The robot

Figure 1 shows the conceptual block diagram for théas to undergo an online learning phase to learn the Q-table.
proposed system. The framework consists of the reactifuring this phase, it is assumed that the human remains
controller, proactive controller and the behavior gain -concomfortably stationary. To speed up the learning phase we
trol blocks. As the name suggests, the reactive controlléise a simple guided reinforcement learning algorithm based
generates a reactive robot behavior based upon the currént counting the number of state-action visits. Essentially
state of the environment. The proactive controller coasisthe action selection for exploration is done on the basis of
of an EKF based human motion predictor and an evaluationumber of visits to the particular state-action pair, inste
based confidence generator. Based upon the observed hurahrandom action selection as in- greedy algorithms. The
actions, the predictor estimates the position of the human reinforcement learning algorithm is given below.
the next time-step, which decides the robot’s proactiveact
Additionally, it generates the confidence of predictionjekh Algorithm 1 Guided Reinforcement Learning
is the key in adjusting the role of the robot. Based upon thei: Initialize Visit(s;,a;) = 0 Vi € N
confidence value, the behavior gain control blocks mixes they: Initialize Q-tableQ(s;, a;) =0 Vi € N
reactive and proactive actions to generate a compositenacti 3. while Learning phaselo
which is taken by the robot. According to our hypothesis, 4 t = timestep
the weight allotted by the gain control block to the proagtiv 5. s, = getState()

behavior varies directly as the confidence value. In theg: Selecta; + argmin(a)[Visit(s;, a)]
remainder of this section, we discuss the details of they Take actiona;
proposed framework. 8: Visit(se, as) < Visit(sy,ap) + 1

o: r = get Reward()

10: UpdateQ(s;, a;) using (1)
The reactive controller generates a reactive response hy: end while

the robot to the observed state of the object. In the table-

lifting task, this controller observes the position of tlable

and suggests a suitable action to perform so that a certadn Proactive Controller

objective is achieved. For our experiments, the objective i The proactive controller is the most important block of

to keep the table horizontal throughout the task. This can t?ﬁe proposed system. Role of the proactive controller is to

accomplished using any generic feedback contr.oIIer. HOVY(eep a track of actions performed by the human and generate
ever, we chose to use a controller learned from reinforcém

| ing for the follow ) €4 prediction of the human’s position in the next time-step,
earning for the following reasons along-with a confidence measure for the prediction. For the

« Itis possible to learn a good controller in a short timeprediction purpose, an extended Kalman filter is used. State
« It compensates for the time needed to manually tungf the EKF z;, is given by

the parameters of a feedback controller.

o Objective of the task is very simple in the current Sk
experiment. However, in the future, we will consider xp = | vk )
complex tasks such alseeping a bowl in the center ay

A. Reactive Controller




The measurement model is given by 1120 ; ' Observed ()
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where s;, is the displacement of the human’s end of the /
table (equivalently his hand-tip)y, is his velocity, a;, is 1060
his acceleration and ~ N (0, R) is the measurement noise, | /
. 1040
all at the instant. e e
We use the assumption that the acceleration of the humar 1020

Position (mm)
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hand changes slowly throughout the motion since humans
naturally try to minimize jerk. Note that this is not the same
as using the minimum jerk model. 15
Hence, the state update equation can be written as = 10} . g‘:’/e c:;icte g
Tyl = v + apt +w (4) \S
ag S or
wherew ~ N(0, Q) is the process noise. S 5y "“\\/’-
Based on the state estimatg, the human’s position at -10 i i i
the next time-step can be predicted as 0 10 20 30 40
Spy1 = S+ Ut + ldth %) 10
2 d’s / dt?
The variance of the measurement noi#g (s initialized 5f Predicted

to 0.7 which corresponds to the uncertainty in measuremen
obtained by the Vicon system. Using this EKF, it is possible
to get nearly accurate predictions of the human’s motion.
For obtaining the confidence of prediction, we derive
inspiration from [13], wherein the authors proposed a tech-

W
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nigue, to obtain a confidence measure based on the stdtistic: 0 10 20 30 40
properties of the residuals between the predicted measure Time Steps (t)

ments and the observed measurements. In our technique, tr

EKF provides a state estimate and an associated covarianc Fig. 4. Predictions obtained from EKF

matrix. Firstly, we marginalize the covariance matrix to

include only the 1-D variance associated with the position

prediction, sayp. Let the predicted position b&.. Then, C. Behavior Gain Control
we evaluate the likelihood of the observed measurement,

using an unnormalized Gaussian distribution given by Ata given time stef;, let the reactive controller suggest a
next-step actiorR 1 and the proactive controller suggest an
Ly =exp |- (21 — 8k)2 6) actionPy 1. Let the confidence of this prediction g ;.
2p2 The gain control block combines these together to form a

We choose an unnormalized Gaussian distribution to malgé)mposne actiondy.+1 given by

0 < £ < 1. 1t can be seen thal would give us a

direct measure of confidence about the prediction based on A1 = Cri1Pry1 + (1 — Chp1) R (8)

the evaluation of the previous prediction against the true

measurement. However, considering only the last step mea-This action is taken by the robot at time-step- 1. The

surement error is not sufficient. For the confidence measuiggpiration for this form has been taken from [6]. Note that

we introduce a function given by because) < C < 1, the robot does not act as a pure leader

Lo+ 6Lp 1+ -+ b 1L, - g:n%lljj;etsf.ollower, but has characteristics of both in differe
L+g+-+ ¢t If the confidence of predictio@y; is high, larger weight

The subscripts denote the time-steps at which they wei® allotted to the proactive action. Hence, the robot’'saarcti

obtained. Hence(y ;1 is the confidence of prediction for has leader-like characteristics. If the robot is not verg-co

the next time-step, that considers all the likelihoods ol fident about the prediction, larger weight is allotted to the

previously, weighted by the forgetting factér where0 <  reactive behavior and the robot’s action seems followkes:li

¢ < 1. This function can be implemented recursively. AlsoSince the system works in real time, the change of behavior

it can be seen that the denominator is for normalization. is dynamic and automatic.

Cry1 =
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IV. EXPERIMENTAL RESULTS B. Prediction

In this section we present the experiments performed anﬁTT]e previously described EKF Ihs u;e(é fohr predicting
the results obtained. the human motion one time-step ahead. Each time step is

typically about 100 ms, which is the minimum time required

. . ._for the robot's arm to move from one position to another.

A. Learning the Reactive Controller based on Q - I‘e"’lm'ng:igure 4 shows the predicted and observed values of position
For Q-learning, a state-action space consisting of 5 statéglocity and acceleration.

and 5 actions was arbitrarily chosen. The rewardvas The predicted position is calculated from (5). True velpcit

decided as and acceleration are derived from the observed positicsh, an
are shown in the figure for comparison with the predicted
r= (|ZQ — Zl|)k — (|Z2 — Z1)|)k+1 (9) values.

It can also be observed from fig. 4 that the predictions
where Z; and Z, represent the position of the human-endare inaccurate during the initial steps of the motion. After
and the robot-end of the table respectively. about 10 time steps the estimates improve. It can be seen

Hence, if the slant of the table is decreased, the robd¢tat the difference between the predicted velocity and the
receives a positive reward. The action set consists of @&tiocalculated velocity is very small. The calculated accéiena
{+2,+1,0,-1,-2, which correspond to the direction and mag-nearly remains centered at 0 with small changes. This partly
nitude of the robot's motion by a defined position step. Theustifies our assumption that the acceleration remaindyear
position step was set to be 2 cm, since it is the smallesbnstant.
precise movement that can be performed by the robot’s arm. )

Values of the reinforcement learning parameter used were; Confidence Measure
learning raten = 0.9 and discount factoty = 0.2. Figure 5 shows how the confidendg) (of the prediction

10 trials were performed to test how quickly the algovaries throughout the task, along with the position préoinst
rithm could converge to an optimal policy. Median valueand observations.
for number of iterations to converge was 36. The longest It can be seen that initially, when the task has not begun
episode took 62 iterations before it could converge. Hencand the table is still, the predictor accurately estimales t
the learning could converge approximately within 40 trialsmotion to be zero which causes the high confidence value
Each learning trial took about 5 minutes to complete. at the beginning. Once the trial starts, in the initial steps
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TABLE |
AVERAGE RMSE

Subject  Avg. RMSE w/o Prediction  Avg. RMSE with Prediction

(mm) (mm)
1 19.139 12.967
2 23.567 16.591
3 24.872 18.418
4 20.085 15.391
5 22.432 17.684

the predictions are inaccurate because of the drastic ehang
in the motion model. This causes confidence value to drop
down suddenly. The reactive controller of the robot becomes
dominant in this region. As the predictor gains knowledge
about the motion, the predictions go on improving. As the

predictions improve, the confidence values also improvss. A

a result the proactive behavior becomes more dominant.

Figure 7 shows the role of the forgetting factbin deter-
mining the confidence. Since it is not possible to reproduce
the exact same trajectory during the task, the confidence
trajectories shown in fig. 7 are computed offline step-by-ste
using data collected from a table lifting task. As seen from
(7), a low value ofp means that the predictor allots a small
weight to older likelihood estimates. Thusmostly depends
upon the recently observetl Hence, if the likelihood values
L change quickly, it cause§ fluctuate heavily. Using a
similar reasoning, a large value ¢f causes the confidence
measure to settle very slowly. Hence the robot cannot adapt
to the motion changes quickly and generates high confidence
values even for incorrect predictions. A good value for
which gives a good tradeoff between smooth variation and
adaptability forC was found to be 0.45.

D. Handling Irregular Cases

One of the major improvements our system offers over
most existing systems, is that, no assumption has been made
regarding the trajectory of the entire motion. The human
has the right to change the trajectory at any point of time,
during the trial. Figure 6 shows a case where the motion of
the human is not typical. Instead of lifting up the table and
keeping it down continuously, the human chooses to take a
pause while lifting the table up. Because of this, an abrupt
change of motion can be seen around time-step 15. The
confidence value drops to zero in 3-4 time steps. During this
phase, the robot starts behaving as the follower and simply
tries to make the table horizontal using the reactive cdietro
As the human continues to keep still, the predictor learns
this model and predicts zero movement. Hence, although the
confidence is high and the robot is the leader, there is no
proactive action since the predicted change in position is
zero. Again at time-step 35, the human starts moving the
table upwards. Again, the robots switches from leader to
follower based on the confidence value. Once the motion
has been stabilized the robot maintains a confidence value
centered somewhere around 0.5.



E. Overall System Performance

1400
In this experiment we evaluate the improvement offere Human 1
by our system for the table lifting task. #1; is the position Human 2
of human side of the table and,, is the position of robot 13001

side at any instant, then the objective is to minimize the
absolute error given by

osition (mm)
H
N
o
o

AbsoluteError = Z |Z1¢ — Zat] (10)
t

We use the motion capture system to record the trajectori &
of the human and robot table ends. Figure 8 shows the 1100
trajectories for cases where the the proposed system w

used (case | : with predictions) and the case where only t RMSE = 6.531 mm N\

reactive controller was used (case Il : without predicfjons 1000 i i

The figure also shows the absolute error calculated for tt 0 50 100 150
two cases. We use the root mean square error (RMSE) Time Steps (t)

characterize the performance.
The following observations can be made from fig. 8

o« The RMSE for the case | is less than RMSE for case

II. . _ by the robot’s performance alone, but also by the human

o The motion observed for case | is smoother than th?ﬁferformance. Especially, subject 1 had been working with

of case II. , _ the system for a longer time than others. Hence, the results

« The absolute error is lower in case . for subject 1 were better compared to other human subjects.
Quantitative results are provided in table | for multiple |p fig. 8 we could observe in case I, the trajectory is
users. 5 human subjects were asked to participate in the tabhych smoother when the human is placing the table down

liting task with the robot, one at a time. Each person wags compared to moving upwards. This is because, inherently,
asked to lift up the table to a random height and keep {he robots motion while lifting the table against gravity is
down for 10 trials. Totally, for both the cases, 100 trial§erky because of the internal control characteristics.sThi

were acquired. The table shows the average RMSE for thygjuces some jerks in the human motion also since they
10 trials observed for each subject, for each case. It can Bgs coupled by the table. Because of this, the prediction
seen that, for all the users, RMSE is lower when the proposegfers, which causes lower confidence levels. But while
approach is used as opposed to a simple reactive approagfbving downwards, the robot is able to move very smoothly
Hence a definite improvement can be observed. which allows the human to move smoothly and hence the

V. DISCUSSIONS AND CONCLUSIONS system is utilized to its full potential resulting in better

Thi i ludes th ith di . r\%grformance. It can also be speculated that sophisticated
futurel,\swsoerﬁslon concludes he paper wi IScussions a locity or torque controlled robots would yield smoother

motions and offer better improvements in performance using
A. Discussions the proposed technique.

Figure 9 shows the performance of two humans perform- Due to t_he limitation in t_he control speed of robot, we
ing the table lifting task. For the sake of comparison witffould obtain atmost 10 motion capture samples per second.
the human-robot team, the RMSE observed was 6.531 miith a faster robot, more samples could be obtained per

The motion of the robot is jerky when its reactive behaviof€cond which would improve the quality of predictions.
is dominant, because of the fixed step sizes. The design offinally, our work can also be easily extended to proactive
our system is such that the prediction accuracy influencé@léoperation. The teleoperated robot can choose to take a
the confidence of prediction. Because of this, many inteRroactive action based_ on the confidence valges which cquld
esting possibilities follow. Better predictions resultbetter 'educe the effect of time delays observed in teleoperation
confidence values which allows for proactive robot behaviognd increase transparency.

Hence, if the human keeps moving smoothly as the robot .

expects him to move, the motion of the robot is also smootl?' Conclusions

This in-turn causes smoother motion of the table as a whole This work contributes to a framework that utilizes human
and hence smoother motion of the human, thus resultingotion prediction to adjust the leader/follower role of the
in better predictions. However, if the motion of the humarcollaborating robot in a co-operative manipulation taske T

is jerky, then the robot is unable to estimate the motioframework consists mainly of the reactive and proactive
accurately, and hence does not allow for leader behavi@r. Tlkiontrollers. The proactive controller is based on an EKF
predictions are not fully utilized in such cases and reflecf®r human motion prediction. A novel technique to derive
poor performance. Thus, the results are not only influenced measure of confidence of the prediction has also been

Fig. 9. Human-Human team lifting the table



proposed. Experimental results were presented to provide
conclusive evidence that the proposed approach offers a
definite improvement over simple reactive approaches. Addi
tionally, the system does not make any assumptions about the
motion trajectory of the object which is practically debie

For future works, we propose to utilize longer term
predictions. A general case where the human action does
not necessarily translate directly to robot action can be
considered. Complex objectives in the cooperative taskdcou
also be added.
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